1) Fact:
$$\sum_{i=1}^{n} (x_i - \overline{x}) = 0.$$

Proof.

$$\sum_{i=1}^{n} (x_i - \overline{x})$$

$$= \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \overline{x}$$

$$= \sum_{i=1}^{n} x_i - n\overline{x}$$

$$= n\overline{x} - n\overline{x}$$

$$= 0$$
(0.1)

	-	_	-	

2) The computational formular for sample variance:

$$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2
= \frac{1}{n-1} \sum_{i=1}^{n} (x_i^2 - 2x_i \overline{x} + \overline{x}^2)
= \frac{1}{n-1} \{\sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} 2x_i \overline{x} + \sum_{i=1}^{n} \overline{x}^2\}
= \frac{1}{n-1} \{\sum_{i=1}^{n} x_i^2 - 2\overline{x} \sum_{i=1}^{n} x_i + n\overline{x}^2\}
= \frac{1}{n-1} \{\sum_{i=1}^{n} x_i^2 - 2n\overline{x}^2 + n\overline{x}^2\}
= \frac{1}{n-1} \{\sum_{i=1}^{n} x_i^2 - n\overline{x}^2\}
= \frac{1}{n-1} \{\sum_{i=1}^{n} x_i^2 - \frac{1}{n} (\sum_{i=1}^{n} x_i)^2\}$$
(0.2)

3) Chebyshev's rule: let $k_{i,1}$. For any data set, the proportion of observations within k standard deviation of the mean lying in the interval $(\overline{x} - ks, \overline{x} + ks)$ is at least $1 - \frac{1}{k^2}$.

Proof. It is equivalent to prove the proportion of the tail observations outside the interval $(\overline{x} - ks, \overline{x} + ks)$ is less than or equal to $\frac{1}{k^2}$. Suppose the proportion of the tail is greater than $\frac{1}{k^2}$. Then the number of points is greater than $n\frac{1}{k^2}$. Let A denote the set of observations outside the interval $(\overline{x} - ks, \overline{x} + ks)$.

We have

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$\geq \frac{1}{n-1} \sum_{x \in A} (x_{i} - \overline{x})^{2}$$

$$\geq \frac{1}{n-1} \sum_{x \in A} (ks)^{2}$$

$$\geq \frac{1}{n-1} \frac{n}{k^{2}} (ks)^{2}$$

$$\geq \frac{n}{n-1} s^{2}.$$

$$(0.3)$$

This is a contradiction. Thus the proportion of tail set A has to be less than or equal to $1/k^2$.