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2) The computational formular for sample variance:
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3) Chebyshev’s rule: let k¿1. For any data set, the proportion of observations within k standard deviation of the mean
lying in the interval (x− ks, x+ ks) is at least 1− 1

k2 .

Proof. It is equivalent to prove the proportion of the tail observations outside the interval (x− ks, x+ ks) is less than or
equal to 1

k2 . Suppose the proportion of the tail is greater than 1
k2 . Then the number of points is greater than n 1

k2 . Let A
denote the set of observations outside the interval (x− ks, x+ ks).
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This is a contradiction. Thus the proportion of tail set A has to be less than or equal to 1/k2.
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