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SUMMARY

We consider situations where the data consist of a number of responses for each individual,
which may include a mix of discrete and continuous variables. The data also include a class of
predictors, where the same predictor may have different physical measurements across different
experiments depending on how the predictor is measured. The goal is to select which predictors
affect any of the responses, where the number of such informative predictors tends to infinity
as the sample size increases. There are marginal likelihoods for each experiment; we specify a
pseudolikelihood combining the marginal likelihoods, and propose a pseudolikelihood informa-
tion criterion. Under regularity conditions, we establish selection consistency for this criterion
with unbounded true model size. The proposed method includes a Bayesian information criterion
with appropriate penalty term as a special case. Simulations indicate that data integration can
dramatically improve upon using only one data source.

Some key words: Information criterion; Large deviation; Model misspecification; Pseudolikelihood; Quadratic form.

1. INTRODUCTION

Consider the following simple but common examples of data integration.

Example 1. We have a set of individuals whose disease status is observed. We also measure
different facets of individual genes, such as mRNA expression, protein expression, RNAseq
expression, and so on. The question is: which genes affect the disease in any of the different
ways the genes are measured? In this example, the gene is a predictor, which can be assessed in
a number of ways through different measurement processes or experiments.

Example 2. Suppose that the individual is assessed through various responses, measurement
mechanisms or experiments, while the predictor is the same across these experiments, and we
want to examine which predictor affects any of the responses.

We consider a formulation that includes both examples as well as combinations of them.
We recognize that the marginal probability densities of the responses will be different among
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experiments and the measurements from different experiments can be correlated, as they would
be in both of the examples above. Our goal is to combine the various marginal likelihoods in
an appropriate manner and perform inference based on a pseudolikelihood and an information
criterion that we develop, doing so in such a way as to allow the number of informative predictors
to tend to infinity as the sample size increases.

One way to approach Example 1 is to pool the different means of measuring the gene and apply
a version of the group lasso, the group being the gene. The group penalty was first formulated
in a 1999 Australian National University PhD thesis by S. Bakin and later used to solve group
selection problems by Yuan & Lin (2006). The group penalty penalizes the L2-norm of the
grouped parameter vector, so it is able to select predictors based on their overall strengths across
experiments. Alternatively, penalty functions such as the smoothly clipped absolute deviation
penalty (Fan & Li, 2001) and the minimax concave penalty (Zhang, 2010) can also be employed
in the group penalization scheme.

The group penalization of pooled parameters of the same covariates is not appropriate for
Example 2, nor is it applicable to combinations of Examples 1 and 2. A joint model is needed
for the multiple responses across the experiments. If such a model is difficult to specify, pooling
all marginal likelihoods is appropriate for the examples discussed above. However, to the best of
our knowledge, the asymptotic properties of group penalized estimation using pseudolikelihood
have not been studied in the literature.

If there is one response and one set of predictors, the extended Bayesian information criterion
with an appropriate penalty term has been shown to be selection consistent, where the total
number of predictors tends to infinity and the number of true predictors is bounded by a constant
(Chen & Chen, 2008). Foster & George (1994) proposed a risk inflation criterion for multiple
regression. To handle settings where the number of true predictors is unbounded, Zhang & Shen
(2010) proposed a corrected risk inflation criterion, and Kim et al. (2012) proposed a generalized
information criterion with modified penalty terms. The consistency of both criteria has been
established only for the linear regression model. The problem of how to design the penalty term
for an information criterion to deal with a varying true model size remains open. We aim to
find an appropriate penalty term for the Bayesian information criterion under likelihood settings
where the true model size is unbounded. We extend the results to a pseudolikelihood information
criterion, thus including both Examples 1 and 2 as well as combinations of them. Model selection
consistency requires various assumptions, including uniform boundedness of all predictors, an
assumption also made by Kwon & Kim (2012) and Kim et al. (2012).

Pseudolikelihood ratio-type statistics asymptotically follow a weighted chi-squared distribu-
tion. This cannot directly provide an upper bound for the tail probability at a given sample size.
Non-asymptotic sharp deviation bounds have been computed by Spokoiny & Zhilova (2013) for
quadratic forms based on their exact distributions. We use large deviation theory to bound from
above the tail probabilities at any given sample size. Our work establishes the consistency of a
pseudolikelihood information criterion for divergent true model size.

2. PSEUDOLIKELIHOOD FORMULATION OF DATA INTEGRATION

Consider a setting with predictors M1, . . . , MP contributing to K different experiments. The
objective is to integrate the data from all the experiments to perform inference about the effects
of the predictors on the responses. Given n independent experimental subjects, the responses
from the kth experiment are denoted by Yk = (Yk1, . . . , Ykn). The parameter vector θk consists
of (θk1, . . . , θkP), where θkp denotes the effect of predictor Mp in experiment k .
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Table 1. Multiple experiments and their parameters:
the predictors are M1, . . . , MP, and the parameter for

predictor Mp in experiment k is θkp

Experiment 1 · · · Experiment K

Parameters θ1 = (θ11, . . . , θ1P)
T · · · θK = (θK1, . . . , θKP)

T

Densities f1(Y1; θ1) · · · fK (YK ; θK )

Observation 1 Y11 · · · YK1

··· ··· ···
Observation n Y1n · · · YKn

Y1 = (Y11, . . . , Y1n)
T · · · YK = (YK1, . . . , YKn)

T

Data from the kth experiment have likelihood function Lk(θk ; Yk) = ∏n
i=1 fk(Yki; θk), where

fk denotes the density function. Let θ = (θ1, . . . , θk). The parameters associated with predictor
Mp across different experiments are θ(p) = (θ1p, . . . , θKp). The Y(i) = (Y1i, . . . , YKi) may be
dependent in a way that is hard to specify. Table 1 illustrates the set-up for data integration when
all K measurements of Y(i) (i = 1, . . . , n) are observed. If some of the Y(i) are incomplete, an
indicator Zki can be introduced. If Yki is observed then Zki = 1; otherwise Zki = 0. In order to
integrate the experiments, we propose to describe the overall data using a working-independence
pseudo-loglikelihood

�I (θ) =
K∑

k=1

wk�k(θk ; Yk) =
K∑

k=1

wk

n∑
i=1

Zki log fk(Yki; θk),

with positive weights wk (k = 1, . . . , K). This formulation is similar to composite likelihood
(Lindsay, 1988; Cox & Reid, 2004; Varin, 2008), which combines marginal densities from a
multivariate distribution. Pseudolikelihood estimation and inference with regard to θ follow
standard theory (White, 1982; Lindsay, 1988; Cox & Reid, 2004;Varin, 2008; Ribatet et al., 2012).
The maximum pseudolikelihood estimate is denoted by θ̂I = arg maxθ �I (θ), and it is consistent
under regularity conditions. The asymptotic covariance matrix of the maximum pseudolikelihood
estimator is given by the inverse of the Godambe information matrix G(θ) = H (θ)TV −1(θ)H (θ),
where H (θ) = E{−∂2�I (θ)/(∂θ∂θ

T)} and V (θ) = cov{∂�I (θ)/∂θ} (Godambe, 1960). For
inference about θ , pseudolikelihood ratio statistics and Wald-type statistics can be formed. In the
data integration set-up, uniform weights can be assigned to each likelihood. If some experiments
are of better quality than others, one could assign them higher weights. In theory, optimal weights
can be constructed by projecting the full likelihood score function onto the linear space of the
composite score functions. However, such optimal weights are challenging to obtain (Lindsay et
al., 2011). Some practical strategies for choosing weights based on the data structure are given
in Varin & Vidoni (2006) and Joe & Lee (2009).

3. FEATURE SELECTION

Given multiple experiments with high-dimensional predictors, one can perform penalized
estimation to select predictors whose parameters are nonzero. If θ(p) is zero, all corresponding
subparameters θkp (k = 1, . . . , K) are zero simultaneously. Otherwise, at least one of the param-
eters θkp is nonzero. Selecting important features is equivalent to selecting a group of parameters.
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We define the overall strength of the predictor Mp as a summarization of the effect sizes in θ(p),
represented by the L2-norm of θ(p). We consider the overall objective function

Q(θ) = �I (θ)− n
pn∑

p=1

�λn(‖θ(p)‖),

with pn denoting the total number of predictors, �λn being the penalty function, and ‖θ(p)‖ =
(
∑K

k=1 θ
2
kp)

1/2 denoting the L2-norm.
As mentioned previously, standard group selection of variables is applicable to Example 1 but

not Example 2.Yuan & Lin (2006) considered group selection and proposed the group lasso. Meier
et al. (2008) showed that the group lasso for logistic regression yields sparse estimates which are
globally consistent in terms of estimation error. Nardi & Rinaldo (2008), Bach (2008) and Zhao
et al. (2009) proved selection consistency of the group lasso under regularity conditions. While
the group lasso possesses excellent prediction and estimation properties, its variable selection
consistency depends on a so-called irrepresentability condition, which requires low correlations
between significant and insignificant predictors. This condition is difficult to satisfy when pn � n
(Huang et al., 2012). The group lasso tends to overshrink large parameters, because the rate of
penalization does not change with the size of the parameters, yielding biased estimates of large
parameters (Fan & Li, 2001). Besides the lasso penalty (Tibshirani, 1996), many other types of
penalty functions have been proposed, including the smoothly clipped absolute deviation penalty
(Fan & Li, 2001) and the minimax concave penalty (Zhang, 2010). These two penalties can
achieve both selection consistency and asymptotic unbiasedness. This was extended to the group
smoothly clipped absolute deviation penalty and the group minimax concave penalty by Wang
et al. (2008), Huang et al. (2012) and Guo et al. (2015). However, no existing work deals with
grouped penalization of a pseudolikelihood, which is required for Example 2. In this paper,
we focus on the grouped smoothly clipped absolute deviation penalty for pseudolikelihood and
establish its properties in high-dimensional models.

The smoothly clipped absolute deviation penalty function satisfies�λ(0) = 0, and, with θ � 0,
its first derivative is

�′
λ(θ) = λ

{
I (θ � λ)+ (aλ− θ)+

(a − 1)λ
I (θ > λ)

}
,

where a is a constant that is usually set to 3·7 (Fan & Li, 2001) and (t)+ = tI (t > 0) is the hinge
loss function.

Let pn → ∞ as n → ∞. We assume that ‖θ(p)‖ > 0 for p = 1, . . . , qn and ‖θ(p)‖ = 0 for
p = qn+1, . . . , pn. Define the collections of nonzero and zero parameters as θa = (θ(1), . . . , θ(qn))

and θb = (θ(qn+1), . . . , θ(pn)), respectively. We make the following assumptions.

Assumption 1. The pseudo-loglikelihood admits third derivatives for almost all Y and for all
θ ∈ B, where the open set B ⊂ � contains the true θ∗. The third partial derivatives are bounded
by square-integrable functions Wjlm(Y(i)), so that |∂3�I (θ ; Y(i))/(∂θj∂θl∂θm)| � Wjlm(Y(i)) for
θ ∈ B and all j, l, m ∈ {vw : v = 1, . . . , K ; w = 1, . . . , pn}, where Eθ∗{Wjlm(Y(i))}2κ � M4 for
an integer κ � 1.

Assumption 2. The parameter space θ ∈ � is a closed set. Each density fk(Yk ; θk) is a mea-
surable function of Yk for any θk , and is distinct for different values of θk . Let θ∗ denote the true
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value of θ . We assume that Eθ∗{∂ log fk(Yki; θk)/∂θkj} = 0 and

Eθ∗
{
∂2 log fk(Yki; θ)

∂θkj∂θkl

}
= −Eθ∗

{
∂ log fk(Yki; θk)

∂θkj

∂ log fk(Yki; θk)

∂θkl

}
,

for j, l = 1, . . . , pn and k = 1, . . . , K .

Assumption 3. Let the submatrices of H (θ∗) and V (θ∗) with respect to the parameters in θa
be denoted by H (1)(θ∗) and V (1)(θ∗). Assume that 0 < λmin{H (1)(θ∗)} < λmax{H (1)(θ∗)} < ∞
and 0 < λmin{V (1)(θ∗)} < λmax{V (1)(θ∗)} < ∞, where λmin and λmax denote the smallest and
largest eigenvalues.

Assumption 1–3 are standard in likelihood theory and are analogous to those used in Xu &
Reid (2011) and Kwon & Kim (2012).

Assumption 4. Assume θ∗ is interior to the parameter space �. There exists an integer κ � 1
such that for constants (M1, M2, M3),

Eθ∗{∂ log fk(Yki; θk)/∂θkj}2κ � M1,

Eθ∗{∂2 log fk(Yki; θk)/(∂θkj∂θkl)}2κ � M2,

Eθ∗[{∂ log fk(Yki; θk)/∂θkj}{∂ log fk(Yki; θk)/∂θkl}]2κ � M3,

for j, l = 1, . . . , pn and k = 1, . . . , K .

Assumption 4 specifies the boundedness of moments of order 2κ for the loglikelihood deriva-
tives, and is used to bound certain tail probabilities. For example, if the density is binomial and
logit pr(Yki = 1 | θk) = X T

kiθk , where Xki = (Xki1, . . . , Xkipn)
T are regression covariates, then

∂ log fk(Yki; θk)/∂θk = [
Yki − exp(X T

kiθk)/{1 + exp(X T
kiθ)}

]
Xki. (1)

If the regression covariates are uniformly bounded in absolute value by a constant b, then

max
1�j�pn

Eθ∗{∂ log fk(Yki; θk)/∂θkj}2κ � max
1�j�pn

X 2κ
kij � b2κ .

Similarly it can be verified that in generalized linear models, other densities from exponential
families satisfy this assumption if the absolute regression covariates are uniformly bounded.

Assumption 5. There exist constants c1 and c2 satisfying 0 < 5c1 < c2 < 1, qn = o(nc1) and
min1�j�qn n(1−c2)/2‖θ∗(j)‖ � M5.

Assumption 5 specifies the rate at which qn grows with respect to n and the rate at which the
size of the nonzero predictors can approach zero. This means that the proportion of true predictors
has to be less than one-fifth the sample size, whereas the number of predictors pn can exceed n.

Define the oracle estimate θ̂ to be any local maximizer of the pseudo-loglikelihood �I (θ)

subject to ‖θ̂ (j)‖ = 0 for j > qn and ‖θ̂ − θ∗‖ = Op{(qn/n)1/2}. Under Assumptions 1–5 it
can be established that such an oracle estimator exists (Fan & Peng, 2004, Theorem 1). Because
the penalty function is singular at the origin, we consider the subderivatives of the objective
function. The subdifferential of a function is a set-valued mapping and is a generalized derivative
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for nondifferentiable functions. Taking the subderivative of Q(θ) in (4) with respect to the jth
grouped parameters θ(j), we get

∂Q(θ)

∂θ(j)
=

⎧⎪⎨
⎪⎩
∂�I (θ)/∂θ

(j) − nλn Sign(θ(j)), ‖θ(j)‖ � λn,

∂�I (θ)/∂θ
(j) − n Sign(θ(j)){aλn − ‖θ(j)‖}/(a − 1), λn < ‖θ(j)‖ < aλn,

∂�I (θ)/∂θ
(j), aλn � ‖θ(j)‖,

(2)

with Sign(·) denoting a set-valued map for a real vector. Let 0 denote the vector of zeros. When
u |= 0, Sign(u) returns u/‖u‖; and for u = 0, Sign(u) returns the set of all possible vectors ω
such that ‖ω‖ � 1.

THEOREM 1. Let S(λn) denote the set of solutions to the subdifferential equation ∂Q(θ)/
∂θ = 0. Under Assumptions 1–5, pr{θ̂ ∈ S(λn)} → 1 provided that λn = o{n−(1−c2+c1/2)} and
pn/(n1/2λn)

2κ → 0 as n → ∞.

We emphasize that pn may be much larger than n, provided that κ defined in Assumption 4
is sufficiently large. If the first, second and third derivatives of the pseudo-loglikelihood have
exponentially decaying tails, Theorem 1 holds when pn = O{exp(nc3)} for some constant c3 > 0
(Kwon & Kim, 2012).

THEOREM 2. With probability tending to 1, as n → ∞, the root-(n/qn)-consistent oracle
estimator θ̂ = (θ̂a, θ̂b) in Theorem 1 satisfies

n1/2An{V (1)(θ∗)}−1/2H (1)(θ∗)(θ̂a − θ∗
a ) → N (0, G),

where V (1)(θ∗) and H (1)(θ∗) are the submatrices of V (θ∗) and H (θ∗) with respect to θa,
{V (1)(θ∗)}1/2 is the symmetric square root of V (1)(θ∗), and An is a m × q∗

n matrix such that
AnAT

n → G, with G being a m × m nonnegative-definite symmetric matrix and q∗
n = K × qn.

In the literature, group penalization has been studied only in true likelihood settings. We
establish the oracle property of group penalization in the pseudolikelihood setting. Our results
show that group penalization using the smoothly clipped absolute deviation penalty is asymp-
totically model-selection consistent even when the marginal likelihoods are correlated. For the
group lasso to be model-selection consistent, the irrepresentability condition (Meinshausen &
Bühlmann, 2006; Zhao & Yu, 2006; Zou, 2006; Bach, 2008) is required. Thus the capacity for
the group lasso to be selection consistent is constrained regardless of the strength of the model
signals (Fan & Lv, 2010). In contrast, the group smoothly clipped absolute deviation penalty
requires less stringent conditions. Provided the coefficient sizes of the nonzero parameters are
sufficiently far from zero at the rate specified in Assumption 5, the oracle property of the group
smoothly clipped absolute deviation penalty can be established for a local maximizer of the
penalized pseudo-loglikelihood. For such a local maximizer to be the unique local maximizer
in a certain restricted model space requires the sparse Riesz condition (Zhang, 2010), which is
similar to but less stringent than the irrepresentability condition (Kwon & Kim, 2012).

4. PSEUDOLIKELIHOOD INFORMATION CRITERION

Although different data sources have various densities and parameters, in our context they
share the same set of predictors. Aggregating different information criteria can boost the power
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to select the correct set of predictors. Given all competing models, consistent model selection
identifies the smallest correct model with probability tending to 1. Let s be a subset of (1, . . . , pn).
The model with θ(p) = 0 for all p /∈ s is called model s. The sets of underfitting models and
overfitting models are denoted by S− and S+, respectively. Assume that the largest model size in
model space s ∈ S is sn, where qn � sn � pn.

We propose to aggregate the information in a linear manner. Our proposed pseudolikelihood
information criterion is

pseu-BIC(s) = −2�I (θ̂I ; Y )+ d∗
s γn, (3)

where d∗
s is a measure of model complexity and γn is a sequence of penalties on the complexity

of the model. In (3), the first term is the pseudo-loglikelihood, which reflects the goodness-of-fit
for model s jointly assessed among multiple data sources, while the second term is the penalty
for model complexity, which enforces sparsity on any model selected.

Let θ∗
T denote the true value of the parameter under the true model T . Under model s, the

parameter space is denoted by �s. Define θ∗
s = arg maxθ∈�s

Eθ∗
T
{�I (θ)}, under the assumption

that such a maximizer is unique in the interior of �s. The effective degrees of freedom d∗
s is

tr{H−1
s (θ∗

s )Vs(θ
∗
s )}, where Hs(θ

∗
s ) and Vs(θ

∗
s ) are computed under model s. The term d∗

s has been
used to measure model complexity in many pseudolikelihood settings (Varin & Vidoni, 2005).

Most consistency results for model selection criteria have been established for a bounded model
T (Chen & Chen, 2008; Gao & Song, 2010) or a divergent true model for linear regression (Zhang
& Shen, 2010; Kim et al., 2012). The results were proved based on the exponential decay rate of
chi-squared statistics. The exponential decay rate is essential for overall selection consistency,
because there are exponentially many psn

n competing models. The Bonferroni inequality gives an
upper bound on the overall selection error, which is the sum of all the tail probabilities. If the
penalty term γn is chosen so that the tail probabilities are exponentially small, then the overall
selection error will converge to zero.

Unlike in linear regression, pseudolikelihood-type statistics asymptotically follow a weighted
chi-squared distribution. It is difficult to bound the tail probability at a given sample size n using
the limiting distribution, so we instead obtain the tail probability based on the exact distributions.
Our approach consists of two steps: first, showing that differences in pseudo-loglikelihoods
between two competing models s and T can be approximated by quadratic forms and that the
approximation errors are uniformly bounded across the model space; and second, based on the
quadratic forms, applying a large deviation result (Spokoiny & Zhilova, 2013) to quantify the
penalty γn so that the tail probabilities are exponentially small.

Letψ denote a random vector, B a matrix, and ‖Bψ‖2 a quadratic form. Large deviation results
for quadratic forms ‖Bψ‖2 were established by Spokoiny & Zhilova (2013) under the exponential
moment condition that for ‖t‖ � g,

log E{exp(tTψ)} � ‖t‖2/2.

Here g is a positive constant which differs between Gaussian and non-Gaussian-type deviation
bounds. We first prove that such an exponential moment condition can be satisfied asymptotically
by taking sample averages, if the original random variables satisfy a cumulant boundedness
condition, defined below.

DEFINITION 1. For a random vector Z of dimension m, let g(t) denote its cumulant generating
function, where t is an m-dimensional real vector. Then Z satisfies the cumulant boundedness
condition if the first two derivatives of its cumulant generating function satisfy |∂g(0)/∂tj| � C1
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and |∂2g(0)/(∂tj∂tk)| � C2 and if there exists a constant δ such that when ‖t‖ � δ, the absolute
values of all the third derivatives of its cumulant generating function satisfy |∂3g(t)/(∂tj∂tk∂tl)|
� C3.

LEMMA 1. Let Z1, . . . , Zn be independently distributed random vectors of dimension m with
zero mean and identity covariance matrices, and let η = n−1/2∑

i Zi. If each random vector
Zi satisfies the cumulant boundedness condition with the same bounds and s4

n log pn = o(n),
then log E{exp(tTη)} � a2‖t‖2/2 for ‖t‖ < (s2

n log pn)
1/2 and some constant a2 > 1, when n is

sufficiently large.

This implies that if the conditions in Definition 1 hold, we can apply large deviation results to
the pseudolikelihood ratio-type statistics arising in our analysis. Next, we assume the cumu-
lant boundedness conditions for the derivatives of the pseudo-loglikelihood. We also make
assumptions about the distances between the true null model and the competing models.

Assumption 6. All the pseudo-loglikelihoods and their first and second derivatives, �I (θ
∗
s ; Y(i)),

�
(1)
I (θ∗

s ; Y(i)) and �(2)I (θ∗
s ; Y(i)), satisfy the cumulant boundedness condition in Definition 1 uni-

formly for all models s ∈ S.Also, there exists a neighbourhood ‖θs−θ∗
s ‖ � δ such that all the third

derivatives of the pseudo-loglikelihoods �(3)I (θs; Y(i)) in that neighbourhood satisfy the cumulant
boundedness condition in Definition 1 uniformly and Hs(θs) and Vs(θs) have eigenvalues bounded
away from zero and infinity uniformly.

Consider generalized linear models with densities from an exponential family. Assume that the
link function is three-times continuously differentiable, all the absolute values of the covariates
are uniformly bounded and the linear predictors are bounded. Then Assumption 6 is satisfied. For
example, if the density is binomial and the canonical link is used, the boundedness of X T

kiθk ensures
thatμ = exp(X T

kiθk)/{1+exp(X T
kiθk)} is bounded away from 0 and 1. Let ∂ log fk(Yki; θk)/∂θk be

formulated as in (1). Then the third derivative of its cumulant generating function g(t) is bounded
by (3/4)max1�j�pn |Xkij|3 max{1/μ3, 1/(1 − μ)3} < ∞.

Assumption 7. Assume that s4
n log pn = o(n). Define the pseudo-Kullback–Leibler distance

between the true model T and the competing model s as EθT {�I (θT ; Y(i))− �I (θ
∗
s ; Y(i))}. Assume

that lim inf n mins∈S− n1/2EθT {�I (θT ; Y(i))− �I (θ
∗
s ; Y(i))}/(sn log pn)

1/2 = ∞.

This assumption regarding the identifiability of the underlying true model allows the pseudo-
Kullback–Leibler distance between the true model and the competing models to tend to zero at a
certain rate. Similar identifiability conditions were assumed in Chen & Chen (2008) and Fan &
Lv (2011). For example, if the limiting minimum distance is a constant, then the assumption is
easily satisfied. For nontrivial cases, we allow the minimum distance to approach zero provided
that it converges to zero more slowly than (sn log pn/n)1/2.

Next we introduce some notation. For any overfitting model s, define a matrix Ds =
(IdT , 0dT ,ds−dT ), where IdT is the identity matrix of dimension dT × dT and 0dT ,ds−dT

denotes the matrix of zeros of dimension dT × (ds − dT ). For every model s, let the
score vector be denoted by Un(θs; Y ) = ∂�I (θs, Y )/∂θs, and construct the quadratic form
Qs = n−1Un(θ

∗
s )

THs(θ
∗
s )

−1Un(θ
∗
s ). According to Lemmas A1 and A2 in the Appen-

dix, 2{�I (θ̂s) − �I (θ̂T )} = (Qs − QT ){1 + op(1)} = Qs/T {1 + op(1)} with Qs/T =
Us(θ

∗
s )

TMs/T Us(θ
∗
s ), where Ms/T denotes the difference matrix Hs(θ

∗
s )

−1 − DT
s H−1

T (θ∗
T )Ds.

Define Bs = V 1/2
s (θ∗

s )Ms/T V 1/2
s (θ∗

s ). It can be shown that tr(Bs) = d∗
s − d∗

T . Let τ = λmax(Bs),
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τ̄ = tr(Bs)/(ds −dT ) andω = maxs∈S τ/τ̄ . For the true loglikelihood,ω = 1. We now establish a
consistency result for the pseudolikelihood information criterion for unbounded true model size.

THEOREM 3. Let γn = 6ω(1 + γ ) log pn for some γ > 0, or γn = 6ω(log pn + log log pn).
Under Assumptions 1–7, as n → ∞,

pr
{

min
s∈S

pseu-BIC(s) > pseu-BIC(T )
}

→ 1.

Theorem 3 demonstrates that, with an appropriate penalty term, the BIC-type information
criterion based on compounded marginal likelihoods from different sources can be selection con-
sistent, even if the underlying true model size tends to infinity. This result includes the usual BIC

based on the true likelihood as a special case with ω = 1 and γn = 6(1 + γ ) log pn. Compar-
ing this to the result of Chen & Chen (2008), who proved the consistency of extended BIC with
bounded true model size, Theorem 3 establishes the selection consistency of a BIC-type infor-
mation criterion with unbounded true model size. In § 5 we use the proposed pseudolikelihood
information criterion to select the optimal tuning parameter for group penalization.

5. SIMULATIONS

5·1. Continuous responses

For our first simulation we generated four different types of experiments, i.e., K = 4, each with
a continuous response Yki and associated covariates Xki = (xki1, . . . , xkipn). We took the sample
size to be n = 500 or 1000, and took the number of covariates to be pn = 200 or 1000. For different
experiments, the regression covariates were different. The number of true covariates was qn = 50.
For j = 1, . . . , qn, θkj was drawn from the uniform distribution on (0·05, 0·5), whereas θkj = 0 for
j = qn + 1, . . . , pn. The covariates Xki were partitioned into independent blocks of 50 covariates,
and within each block the 50 covariates were simulated from the multivariate normal distribution
with variances equal to 1 and all off-diagonal covariances equal to 0·2. For each experiment,
the mean parameter is μki = X T

kiθk . We simulated Yi from a multivariate normal distribution
with mean μi = (μ1i, . . . ,μKi) and covariance matrix �. The covariance matrix was compound
symmetric with unit variances and off-diagonal covariances 0·7.

We used the group smoothly clipped absolute deviation penalty function to perform feature
selection and used the pseudolikelihood information criterion to select the tuning parameters.
For group penalized estimation, we used the group descent algorithm proposed by Breheny
& Huang (2015). With regard to the penalty term, Theorem 3 provides a theoretical value of
6ω(1 + γ )d∗

s log pn. Here the effective degrees of freedom is d̂∗
s = tr(Ĥ−1

s V̂s), where Ĥs is the
observed Hessian matrix and V̂s is the sample covariance matrix of the composite scores. We set
the penalty term to be cd̂∗

s log pn, where c is constant. This penalty term therefore has the same
asymptotic order as the theoretical penalty term. We set c = 1 or c = 6 and examined how the
sensitivity and selectivity of our method changed. Table 2 reports the positive selection rates and
false discovery rates of our data integration method and the single-experiment analysis based
on the first experiment only. When c changes from 1 to 6, our method’s positive selection rate
and false discovery rate decrease slightly. A large improvement in its performance is observed
compared with single-experiment analysis. For example, when c = 1, n = 500 and pn = 1000,
the positive selection rate and false discovery rate of the data integration method are 1·00 and
0·02, whereas those of single-experiment analysis are 0·81 and 0·35.
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Table 2. Positive selection rates (%) and false discovery rates (%) of the data inte-
gration method compared with single-experiment analysis for multivariate normal
responses as described in § 5·1; the reported numbers are average rates obtained

from 100 simulated datasets
c = 1 c = 6

p n DI SA DI SA
PSR FDR PSR FDR PSR FDR PSR FDR

200 500 100 2 91 28 99 0 73 3
STD 1 2 5 8 1 0 13 4

200 1000 100 0 96 27 100 0 90 4
STD 0 1 3 8 1 0 6 3

1000 500 100 7 81 35 99 0 57 2
STD 1 7 7 10 1 1 13 3

1000 1000 100 0 91 29 100 0 81 4
STD 0 1 4 8 1 0 7 3

DI, data integration method; SA, single-experiment analysis; PSR, positive selection rate; FDR, false
discovery rate; STD, sample standard deviation of PSR and FDR from 100 simulations; c, the free
multiplicative constant for the penalty.

5·2. Continuous responses with correlations between predictors and nonpredictors

We investigated the performance of the proposed method with the group smoothly clipped
absolute deviation penalty and the group lasso penalty when there are correlations between
predictors and nonpredictors. This setting violates the strong irrepresentability condition and
thus affects the performance of the lasso penalty. We conducted four different experiments. The
covariates Xki were partitioned into independent blocks of 200 covariates. The first block contains
50 true predictors and 150 nonpredictors. These 200 covariates were simulated from multivariate
normal distributions with unit variances and off-diagonal covariances 0·2 or 0·5. The remaining
nonpredictors were simulated from independent normal distributions with unit variances.All other
parameter settings are the same as in § 5·1. We chose n = 1000 and p = 1000. Table 3 shows that
in the presence of correlation between predictors and nonpredictors, the group smoothly clipped
absolute deviation outperforms the group lasso.

5·3. Multiple experiments with varying quality of information

Our third simulation examines the performance of our method when experiments contain dif-
ferent amounts of information. The sizes of the nonzero parameters are different across four
different experiments. In the first case, all experiments provide information relating the predic-
tors and the responses. The nonzero parameters θ1j, θ2j, θ3j and θ4j were drawn from uniform
distributions on (0·05, 0·5), (0·05, 0·4), (0·05, 0·3) and (0·05, 0·15). In the second case, the other
three experiments provide almost no information, with θ2j, θ3j and θ4j drawn from uniform dis-
tributions on (0, 0·05) for j = 1, . . . , qn. All other parameter settings are the same as in § 5·1.
We chose n = 500 and p = 1000. Table 4 shows that if the other three experiments contain
information, even if the amount is much smaller than that in the first experiment, combining all
four experiments outperforms any single-experiment analysis. However, if the other three exper-
iments contain no information at all, then combining all four experiments provides worse results
than the single-experiment analysis on the first experiment.
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Table 3. Positive selection rates (%), false discovery rates (%)
and estimation errors of the data integration method using group
lasso and using the group smoothly clipped absolute deviation
penalty in the presence of correlated covariates with n = 1000
and p = 1000, as described in § 5·2; the reported numbers are

average values from 100 simulated datasets
Lasso SCAD

r PSR FDR SSE PSR FDR SSE

0·20 100 1 224 100 0 47
STD 1 1 82 1 1 7

0·50 99 3 464 99 1 282
STD 2 5 106 2 3 118

SCAD, smoothly clipped absolute deviation penalty; PSR, positive selection rate;
FDR, false discovery rate; SSE, sum of squared errors of the penalized estimate
‖θ̂ − θ‖2

2, multiplied by 100; r, the correlation between true predictors and false
predictors; STD, sample standard deviation of PSR, FDR and SSE computed from
100 simulations.

Table 4. Positive selection rates (%) and false discovery rates (%) of the data integration
method and single-experiment analysis with four experiments containing different amounts

of information, as described in § 5·3
DI SA1 SA2 SA3 SA4

Information PSR FDR PSR FDR PSR FDR PSR FDR PSR FDR

YES 98 6 81 35 76 31 66 24 34 9
STD 2 6 7 10 7 10 9 9 12 9

NO 51 5 81 35 0 0 0 3 0 1
STD 24 6 7 10 1 0 1 16 1 11

DI, data integration method; SA1–SA4, single-experiment analysis on four different platforms; PSR, positive
selection rate; FDR, false discovery rate; STD, sample standard deviation of PSR and FDR computed from 100
simulations; YES, the 2nd to 4th experiments have information relating the predictors and the responses; NO,
the 2nd to 4th experiments have no information relating the predictors and the responses.

5·4. Mixtures of continuous and binary responses

Our fourth simulation examines the performance of our method on data with correlated con-
tinuous and binary responses and K = 4. All experiments share the same set of covariates
Xi = (xi1, . . . , xipn). We took n = 1000, 1500 and pn = 200, 1000. For different experi-
ments, the regression covariates were different. The number of true covariates was qn = 50.
For j = 1, . . . , qn, θkj was drawn from the uniform distribution on (0·05, 0·5), whereas θkj = 0
for j = qn + 1, . . . , pn. The covariates Xi were standard normal. For each experiment, the mean
parameter is μki = X T

i θk . We simulated Y ∗
i from a multivariate normal distribution with mean

μi = (μ1i, . . . ,μKi) and covariance matrix �. The covariance matrix was compound symmetric
with unit variances and off-diagonal covariances 0·7. For the first two experiments, the observed
responses were continuous values Yki = Y ∗

ki (k = 1, 2); for the third and fourth experiments,
the binary data were Yki = I (Y ∗

ki > 0) (k = 3, 4). Table 5 shows the performance of the data
integration method when c = 1 and 6. The results are consistent with Table 2, where the data
integration method outperforms the single-experiment analysis based on the first experiment
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Table 5. Positive selection rates (%) and false discovery rates (%) of the data inte-
gration method compared with single-experiment analysis for multivariate mixed
binary and continuous responses, in the case where the binary and continuous
responses are correlated, as described in § 5·4; the reported numbers are average

rates obtained from 100 simulated datasets
c = 1 c = 6

p n DI SA DI SA
PSR FDR PSR FDR PSR FDR PSR FDR

200 1000 100 1 96 30 93 0 89 5
STD 1 2 3 8 13 0 6 3

200 1500 100 1 99 29 97 0 94 5
STD 0 1 2 7 3 0 4 4

1000 1000 99 1 90 34 83 0 81 5
STD 1 1 5 7 26 0 7 4

1000 1500 100 1 95 32 96 0 88 4
STD 1 3 4 7 3 0 6 4

c, the free multiplicative constant for the penalty; DI, data integration method; SA, single-experiment
analysis; PSR, positive selection rate; FDR, false discovery rate; STD, sample standard deviation of
PSR and FDR from 100 simulations.

only. For example, when n = 1000, pn = 1000 and c = 1, the positive selection rate and false
discovery rate of our data integration method are 0·99 and 0·01, respectively, whereas those of
the single-experiment analysis are 0·90 and 0·34.

6. DATA ANALYSIS

First we applied our method to Example 1 discussed in § 1. The data consist of two different
microarray experiments on breast cancer cells (Wang et al., 2005; Iwamoto et al., 2011). In the
first experiment, the gene expression profiles from total RNA were obtained from frozen tumour
samples from lymph-node-negative patients who had not received adjuvant systemic treatment. In
the second experiment, pretreatment fine-needle aspirations from primary tumours were obtained
and RNA was extracted and hybridized to microarrays. Because of the different experimental
protocols, the two sets of gene expression profiles are globally different. Both experiments were
conducted to study the difference in gene expression profiles between estrogen-receptor-positive
and estrogen-receptor-negative patients. The training dataset consists of a total of 170 samples,
with 35 samples from the estrogen-receptor-positive patients and 50 samples from the estrogen-
receptor-negative patients. In Figs. 1 (a) and (b), the heatmaps of the two experiments are shown.
The objective of the analysis is to combine the data from the two experiments and find a common
set of candidate genes to classify the estrogen-receptor-positive and estrogen-receptor-negative
cases. For each of the experiments, we constructed a logistic model with the two subclasses as
the binary responses and the expression levels of all the genes as the covariates. We applied our
method and used the group smoothly clipped absolute deviation penalty to penalize the regression
coefficients. With increasing penalty size, we obtained a shorter list of genes. Figures 1 (c) and (d)
show the selected genes when the candidate list has been reduced to four candidates. The selected
top candidates exhibit consistent significant differential behaviour in the two experiments. The
logistic models based on the selected four covariates were used to classify the subclasses of a
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Fig. 1. Panels (a) and (b) show heatmaps of the microarray gene expression profiles from the two experiments in
Wang et al. (2005) and Iwamoto et al. (2011), respectively; only the first 30 genes are depicted in the heatmaps. Panels
(c) and (d) display the heatmaps of the gene expression levels of the four selected genes from both experiments; + signs

denote estrogen-receptor-positive samples and − signs represent estrogen-receptor-negative samples.
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Table 6. Sum of squared prediction errors of selected subset mod-
els and the full model for three responses in the financial market

indices data
Model VIX S&P 500 Dow Jones

SSPE of submodel by group SCAD 4930·00 2·10 15·27
SSPE of submodel by group lasso 5746·81 2·57 14·81
SSPE of full model 6375·95 1·62 17·41
Total variation in the response 12539·58 165·24 160·83

SSPE, sum of squared prediction errors; SCAD, smoothly clipped absolute
deviation.

different validation dataset, which contains 13 samples from the first experiment and 54 samples
from the second experiment. Among the 67 validation samples, 16 samples were misclassified.
The overall accuracy rate of the classification on the validation data was 76%.

Second, we applied our method to Example 2 discussed in § 1. The dataset consists of financial
market indices. We are interested in three indices, the S&P 500 index, the Dow Jones index and
the VIX index. The VIX is a measurement of implied volatility of the S&P 500 index and is
highly negatively correlated with it. The S&P 500 and Dow Jones are positively correlated. The
46 covariates are the major international equity indices, the North American bond indices, and
the major commodities indices. The goal of the analysis is to select a subset of covariates to
model the S&P 500, Dow Jones and VIX indices. The training dataset consists of three-year
market performances of the S&P 500 index, the Dow Jones index and the VIX index along with
the 46 covariates. For each index, the value used in the analysis is log(today’s value/yesterday’s
value) ×100. There are a total of 232 records, with three-day spacing between the values. The
values are not autocorrelated at a 5% significance level.

For each response, we constructed a linear regression model based on the same set of covariates.
We used both the group lasso penalty and the group smoothly clipped absolute deviation penalty.
The subset selected by the group lasso contains 37 covariates, while the subset obtained by the
group smoothly clipped absolute deviation penalty contains 34 covariates. The two methods had
31 covariates in common. In order to validate the submodels, we used the model built from the
training dataset to perform prediction on a different validation dataset of 232 records. Table 6
shows the sum of squared prediction errors for the submodels selected by the group smoothly
clipped absolute deviation penalty and the group lasso penalty and for the full model, together
with the total sum of squared variation in the responses. Both selected submodels have small
prediction errors compared with the total variation in the responses in the validation dataset.
The submodel selected by the group smoothly clipped absolute deviation penalty has smaller
prediction errors than that selected by the group lasso in two out of the three responses.

7. DISCUSSION

A missing data problem arises if some predictors have not been measured in some of the
experiments. To see the possible difficulties, for simplicity let us consider linear models with
observations Yki of the form Yki = αk + ∑P

p=1 Xkpiθkp + εki, where the εki may be correlated
within subject i but are independent of the covariates. This means that E(Yki | Xk1i, . . . , XkPi) =
αk + ∑P

p=1 Xkpiθkp. Now suppose that for experiment k = 2, X2pi for p = 1 is missing for
all subjects. Then, for experiment k = 2, the regression mean is E(Y2i | X22i, . . . , X2Pi) =
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α2 + E(X21i | X22i, . . . , X2Pi)θ21 +∑P
p=2 X2piθ2p. Unless E(X21i | X22i, . . . , X2Pi)θ21 is constant,

θ21 contaminates all the other θ2p for p � 2. If E(X21i | X22i, . . . , X2Pi)θ21 is constant, we can
ignore θ21 and remove it from θ(1). Then the length of θ(1) is less than K . In general, let Kp denote
the length of θ(p), which can be smaller than K . We can consider the objective function

Q(θ) = �I (θ)− n
pn∑

p=1

�λn

{
(K/Kp)

1/2‖θ(p)‖}, (4)

with (K/Kp)
1/2 adjusting for the different lengths of θ(p). In this case, our results will hold for

criterion (4).
In contrast, if E(X21i | X22i, . . . , X2Pi) is not constant and X21i is not missing for all subjects,

we could model the covariate missing mechanism under a missingness at random assumption.
In Claeskens & Consentino (2008), a missing data AIC-type criterion was proposed with the
observed-data likelihood being replaced by the expected complete-data likelihood. Garcia et
al. (2010) investigated the smoothly clipped absolute deviation penalty and adaptive lasso and
proposed a model selection and estimation procedure for use when there are missing data. Both
methods were established for finite p. Further research is needed to consider the large-p scenario in
this case.
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APPENDIX

Proof of Theorem 1. By taking the first derivative of the objective function Q(θ) with respect to the jth
grouped parameters θ(j), we show that θ̂ satisfies the Karush–Kuhn–Tucker conditions. By the definition
of an oracle estimate, for 1 � j � qn, ∂�I (θ)/∂θ

(j)|θ̂ = 0. It can be shown that pr(min1�j�qn ‖θ̂ (j)‖ �
aλn) → 1, because min1�j�qn ‖θ̂ (j)‖ � min1�j�qn ‖θ∗(j)‖ − max1�j�qn ‖θ∗(j) − θ̂ (j)‖, min1�j�qn ‖θ∗(j)‖ >
M5n−(1−c2)/2, max1�j�qn ‖θ∗(j) − θ̂ (j)‖ = Op(n−(1−c1)/2) and λn = o(n−(1−c2+c1)/2). Thus θ̂ (j) belongs to the
third case in formula (2) and ∂Q(θ)/∂θ(j)|θ̂ = 0.

Let Sj(θ) = ∂�I (θ)/∂θ
(j). For the remaining parameters, we prove that pr(maxqn<j�pn ‖Sj(θ̂)‖ �

nλn) → 1. For each k , θ̂k is an oracle estimate for θk . Therefore, by formula (A.7) in Kwon & Kim (2012),
it can be shown that pr{maxqn<j�pn |∂�I (θ̂)/θkj| > nλn/K1/2} → 0. Hence pr{maxqn<j�pn ‖Sj(θ̂)‖ > nλn} �∑K

k=1 pr{maxqn<j�pn |∂�I (θ̂)/θkj| > nλn/K1/2} → 0. Therefore θ̂ (j) belongs to the first case in formula (2)
and ∂Q(θ)/∂θ(j)|θ̂ = 0. �

Proof of Theorem 2. Let ∇�I (θ) = ∂�I (θ)/∂θ denote the score vector of the pseudolikelihood. Let
∇1 denote partial differentiation with respect to θa. Let ∇2�I (θ) denote the matrix of second deriva-
tives ∂2�I (θ)/(∂θ∂θ

T). We expand ∇1�I (θ̂) about θ∗, knowing that ∇1�I (θ̂) = 0, as ∇1�I (θ̂) =
∇1�I (θ

∗) + ∇2
1�I (θ

∗)(θ̂a − θ∗
a ) + R, where R is a q∗

n × 1 vector of remainder terms with Ri =
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(1/2)
∑

j,l ∂
3�I (θ)/(∂θi∂θj∂θl)

∣∣
θ̃
(θ̂j − θ∗

j )(θ̂k − θ∗
k ) for i, j, k ∈ {st : s = 1, . . . , K ; t = 1, . . . , qn} and

θ̃ between θ∗ and θ̂ . This leads to n−1∇2
1�I (θ

∗)(θ̂a − θ∗
a ) = −n−1{∇1�I (θ

∗) + R}. By Assumption 1,
|∂3�I (θ

∗)/(∂θi∂θj∂θk)| �
∑n

l=1 Wijk(Y(l)). Thus

|Ri/n| � n−1
∑

l

∑
j

∑
k

Wijk(Y(l))(θ̂j − θ∗
j )(θ̂k − θ∗

k )

= n−1
∑

l

∑
j

∑
k

[
Wijk(Y(l))− E{Wijk(Y(l))}

]
(θ̂j − θ∗

j )(θ̂k − θ∗
k )

+ n−1
∑

l

∑
j

∑
k

E{Wijk(Y(l))}(θ̂j − θ∗
j )(θ̂k − θ∗

k ) = I1 + I2,

where I2 � Mqn‖θ̃1 − θ∗
1 ‖2 = Op(q2

n/n) for some constant M by the Cauchy–Schwarz inequality. Let W ∗
ijkl

denote the centred random variable Wijk(Y(l))−E{Wijk(Y(l))}. By the Rosenthal inequality, E{(∑l W ∗
ijkl)

2} =
O(n). Using the Markov inequality, we have (

∑
l W ∗

ijkl)
2 = Op(n). For I1, by the Cauchy–Schwarz inequality,

I1 � n−1

{∑
j

(θ̂j − θ∗
j )

2

}1/2 {∑
k

(θ̂k − θ∗
k )

2

}1/2
⎧⎨
⎩
∑

j

∑
k

(∑
l

W ∗
ijkl

)2
⎫⎬
⎭

1/2

= Op(qn/n
2)

⎧⎨
⎩
∑

j

∑
k

(∑
l

W ∗
ijkl

)2
⎫⎬
⎭

1/2

= Op(q
2
nn3/2).

Upon combining these results for I1 and I2, |Ri| = Op(q2
n). Let Anr denote the rth row of An. It then follows

that ∣∣n−1/2Anr{V (1)(θ∗)}−1/2R
∣∣ � n−1/2‖Anr‖λmax

[{V (1)(θ∗)}−1/2
]‖R‖ = Op{(q5

n/n)
1/2} = op(1).

Therefore the vector n−1/2An{V (1)(θ∗)}−1/2R converges to zero in probability. By Lemma 8 in Fan & Peng
(2004), ‖{H (1)(θ∗)+ n−1∇2

1 (θ
∗)}(θ̂a − θ∗

a )‖ � op(q−1
n )Op{(qn/n)1/2}, so

∣∣n1/2Anr{V (1)(θ∗)}−1/2
{
H (1)(θ∗)+ n−1∇2

1 (θ
∗)
}
(θ̂a − θ∗

a )
∣∣

� n1/2‖Anr‖λmax{V (1)(θ∗)}−1/2
∥∥{H (1)(θ∗)+ n−1∇2

1 (θ
∗)
}
(θ̂a − θ∗

a )
∥∥ = op(1).

It follows that the vector n1/2An{V (1)(θ∗)}−1/2{H (1)(θ∗)+ n−1∇2
1 (θ

∗)}(θ̂a − θ∗
a ) converges to zero in prob-

ability. This means that n1/2An{V (1)(θ∗)}−1/2H (1)(θ∗)(θ̂a − θ∗
a ) = n−1/2An{V (1)(θ∗)}−1/2∇1�I (θ

∗) + op(1).
Next, let Zl = n−1/2An{V (1)(θ∗)}−1/2∇1�I (θ

∗, Y(l)). By the argument in the proof of Theorem 2 of Fan &
Peng (2004),

∑n
l=1 E‖Zl‖2I {Zl � ε} = o(1) and limn

∑n
l=1 cov(Zl) = G. According to the Lindeberg–

Feller central limit theorem, this means that n−1/2An{V (1)(θ∗)}−1/2∇1�I (θ
∗) → N (0, G) in distribution,

completing the proof. �

Proof of Theorem 3. According to Lemma A3 below, maxs∈S− 2{�I (θ̂s) − �I (θ
∗
s )} = Op(sn log pn). For

the true model T , 2{�I (θ̂T )−�I (θ
∗
T )} = Op(1). DefineλT |s(Y ) = �I (θ

∗
T ; Y )−�I (θ

∗
s ; Y ). Based on LemmaA6,

maxs∈S− λT |s(Y )− Eθ∗T {λT |s(Y )} = Op{(nsn log pn)
1/2}. Therefore, for an underfitting model,

−2{�I (θ̂s)− �I (θ̂T )} � −2
[

max
s∈S−

{�I (θ̂s)− �I (θ
∗
s )}
]

+ 2{�I (θ̂T )− �I (θ
∗
T )}

+ 2
[
λT |s(Y )− Eθ∗T {λT |s(Y )}

]+ 2Eθ∗T {λT |s(Y )}
= Op(sn log pn)+ Op{(nsn log pn)

1/2} + 2Eθ∗T {λT |s(Y )}.
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This means that

min
s∈S−

pseu-BIC(s)− pseu-BIC(T ) � min
s∈S−

−2{�I (θ̂s)− �I (θ̂T )} + γn(d
∗
s − d∗

T ).

Because |γn(d∗
s − d∗

T )| = O(sn log pn), lim inf n→∞ mins∈S− Eθ∗T {λT |s(Y )}/(nsn log pn)
1/2 = ∞ and

s4
n log pn = o(n), we have that prθ∗T {pseu-BIC(T ) < mins∈S− pseu-BIC(s)} → 1.

For an overfitting marginal model s,

pseu-BIC(s)− pseu-BIC(T ) = −2{�I (θ̂s)− �I (θ̂T )} + (d∗
s − d∗

T )γn

� − max
s∈S+ Qs/T + (d∗

s − d∗
T )γn + op(1).

By Lemma A4, prθ∗T {maxs∈S+ Qs/T < (d∗
s − d∗

T )γn} → 1, completing the proof. �

Proof of Lemma 1. By Taylor expansion, for ‖t‖ � δ, the cumulant generating function for Zi is gi(t) =
tTt/2 + (1/6)

∑m
j,k ,l=1 ∂

3gi(t∗)/(∂tj∂tk∂tl) tjtk tl for some 0 � ‖t∗‖ � ‖t‖ � δ. Let ∂3ḡ(t)/(∂tj∂tk∂tl) =
n−1

∑n
i=1 ∂

3gi(t)/(∂tj∂tk∂tl). Because each third-order partial derivative is uniformly bounded, so too is
the average third-order partial derivative. For any ‖t‖/n1/2 � δ, the moment generating function of η =
n−1/2

∑n
i=1 Zi is

φη(t) = exp

⎧⎨
⎩tTt/2 + (1/6)

m∑
i,j,k=1

n−1/2titj tk∂
3ḡ(t∗/n1/2)/(∂ti∂tj∂tk)

⎫⎬
⎭ = exp

[
(tTt/2){1 + o(1)}].

This is due to the fact that ‖t∗‖ < ‖t‖ < (s2
n log pn)

1/2 and that |∂3ḡ(t∗/n1/2)/(∂ti∂tj∂tk)| < C as ‖t‖/n1/2 �
n−1/2(s2

n log pn)
1/2 → 0. Therefore log E{exp(tη)} � a2tTt/2 for ‖t‖ < (s2

n log pn)
1/2, for some a2 > 1 and

n sufficiently large. �

LEMMA A1. Under Assumptions 1–7, there exists a solution θ̂s to the score equation Un(θs; Y ) =
∂�I (θs, Y )/∂θs = 0 that falls within a (s2

n log pn/n)1/2-neighbourhood of θ∗
s for all s ∈ S, with probability

tending to 1 as n → ∞.

Proof of Lemma A1. For any unit vector v, let θs = θ∗
s + C(s2

n log pn/n)1/2v for some constant C. By
Taylor expansion,

�I (θs)− �I (θ
∗
s ) = C(s2

n log pn/n)
1/2vTUn(θ

∗
s )+ (1/2)C2(s2

n log pn/n)v
T�
(2)
I (θ̃s)v,

where θ̃s is within an η-neighbourhood of θ∗
s and �(2)I = ∂2�I (θs)/∂θ

2
s . By Assumption 6, which says

that E{−�(2)I (θ̃s)} has eigenvalues uniformly bounded away from zero and infinity, when θs is in the
η-neighbourhood of θ∗

s , we have vTE{−�(2)I (θ̃s)}v = Op(n). Using arguments similar to those in the proof
of Lemma A6,

max
s∈S

∣∣�(2)ij (θ̃s)− E{�(2)ij (θ̃s)}
∣∣ = Op{(nsn log pn)

1/2} = op[E{�(2)ij (θ̃s)}],

where �(2)ij denotes the second derivative of �I with respect to indices i and j, for i, j ∈ {vw : v =
1, . . . , K ; w = 1, . . . , ds}. From Lemma A6, maxs∈S ‖Un(θs,0)‖ = (ns2

n log pn)
1/2. By the Cauchy–Schwarz

inequality, vTUn(θs,0) � ‖v‖ ‖Un(θs,0)‖ = Op{(ns2
n log pn)

1/2}. Combining the results above yields that
maxs∈S{�I (θs)− �I (θ

∗
s )} < 0 in probability with the constant C chosen sufficiently large. This means that

pr[maxs∈S{�I (θs) − �I (θ
∗
s )} < 0] → 1 as n → ∞. Thus, with probability tending to 1, there exists a

solution to the score equation which falls within a (s2
n log pn/n)1/2-neighbourhood of θ∗

s for all s ∈ S. �
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LEMMA A2. Under Assumptions 1–7, as n → ∞, 2{�I (θ̂s) − �I (θ
∗
s )} = Qs{1 + op(1)} where Qs =

n−1Un(θ
∗
s )

T{Hs(θ
∗
s )}−1Un(θ

∗
s ), and op(1) holds for all models s ∈ S.

Proof of Lemma A2. Consider a competing model s. Let �(1)r denote ∂�I/∂θr , let �(2)rt denote
∂2�I/(∂θr∂θt), and let �(3)rtu denote ∂3�I/(∂θr∂θt∂θu) for r, t, u ∈ {vw : v = 1, . . . , K ; w = 1, . . . , ds}.
Let Hrt(θ

∗
s ) denote the (r, t)th entry of the Hessian matrix. Taylor expansion of �(1)r (θ̂s) = 0 about θ∗

s gives
the system of equations

0 = n−1�(1)r (θ̂s) = n−1�(1)r (θ
∗
s )+

∑
t

n−1�
(2)
rt (θ

∗
s )(θ̂s − θ∗

s )[t]

+
∑

tu

(2n)−1�
(3)
rtu(θ̃s)(θ̂s − θ∗

s )[t](θ̂s − θ∗
s )[u],

for some θ̃s between θ∗
s and θ̂s.

Here n−1
∑

t �
(2)
rt (θ̂s−θ∗

s )[t] = ∑
t{−Hrt+(n−1�

(2)
rt +Hrt)}(θ̂s−θ∗

s )[t], where �(2)rt and Hrt are evaluated at θ∗
s .

By LemmaA6, maxs∈S(n−1�
(2)
rt +Hrt) = (sn log pn/n)1/2 = op(1), and we can write

∑
t n−1�

(2)
rt (θ̂s −θ∗

s )[t] =∑
t(−Hrt)(θ̂s−θ∗

s )[t]{1+op(1)}. By a similar argument, n−1�
(3)
rtu(θ̃s) = E{n−1�

(3)
rtu(θ̃s)}{1+op(1)}. We rewrite∑

tu(2n)−1�
(3)
rtu(θ̃s)(θ̂s −θ∗

s )[t](θ̂s −θ∗
s )[u] = ∑

t[(1/2)(θ̂s −θ∗
s )[t]

∑
u{n−1�

(3)
rtu(θ̃s)(θ̂s −θ∗

s )[u]}]. By LemmaA1,∑
u n−1�

(3)
rtu(θ̃s)(θ̂s − θ∗

s )[u] = Op{(s4
n log pn/n)1/2} = op(1). This means that

0 = n−1�(1)r (θ̂s) =n−1�(1)r (θ
∗
s )−

∑
t

Hrt(θ̂s − θ∗
s )[t]{1 + op(1)}.

We thus obtain n−1Un(θ
∗
s ) = Hs(θ

∗
s )(θ̂s−θ∗

s ){1+op(1)} and (θ̂s−θ∗
s ) = n−1H −1

s (θ∗
s )Un(θ

∗
s ){1+op(1)}, while

op(1) holds for all models s. Next, Taylor expansion for the pseudo-loglikelihood leads to �I (θ̂s)−�I (θ
∗
s ) =

Un(θ
∗
s )

T(θ̂s − θ∗
s )− (1/2)

∑
rt n(θ̂s − θ∗

s )[r](θ̂s − θ∗
s )[t]Hrt + R̃n, where the error term is given by

R̃n = 1

2

∑
rt

(θ̂s − θ∗
s )[r](θ̂s − θs)[t](�

(2)
rt + nHrt)

+ 1

6

∑
rtu

(θ̂s − θ∗
s )[r](θ̂s − θ∗

s )[t](θ̂s − θ∗
s )[u]�

(3)
rtu(θ̃s),

with θ̃s between θ∗
s and θ̂s. By arguments similar to those above, (�(2)rt +nHrt)/(nHrt) = op(1) and {∑u(θ̂s −

θ∗
s )[u]�

(3)
rtu(θ̃s)}/nHrt = op(1). Therefore

�I (θ̂s)− �I (θ
∗
s ) = Un(θ

∗
s )

T(θ̂s − θ∗
s )−

{
1

2

∑
rt

n(θ̂s − θ∗
s )[r](θ̂s − θ∗

s )[t]Hrt

}
{1 + op(1)}.

This implies that 2{�I (θ̂s) − �I (θ
∗
s )} = n−1Un(θ

∗
s )

THs(θ
∗
s )

−1Un(θ
∗
s ){1 + op(1)}, where op(1) holds for all

models s ∈ S. �

LEMMA A3. Under Assumptions 1–7, maxs∈S |2{�I (θ̂s)− �I (θ
∗
s )}| = Op(sn log pn).

Proof of Lemma A3. By Lemma A2 we have 2{�I (θ̂s)− �I (θ
∗
s )} = Qs{1 + op(1)}, where the quadratic

approximation Qs = n−1Un(θ
∗
s )

T{Hs(θ
∗
s )}−1Un(θ

∗
s ) and the term op(1) both hold uniformly for every model

s. Therefore, it suffices to show that maxs∈S |Qs| = Op(sn log pn). Based on the cumulant boundedness
condition of �(1)(θ∗

s ; Y(i)) and the uniform boundedness of the eigenvalues of Vs(θs) in Assumption 6,
η = n−1/2{Vs(θ

∗
s )}−1/2Un(θ

∗
s ) satisfies the exponential moment condition

log E{exp(γ Tη)} � a2‖γ ‖2/2



Data integration with high dimensionality 269

with γ ∈ Rds , ‖γ ‖ � (s2
n log pn)

1/2 and some constant a2 > 1. We scale the vector η by η∗ = η/a, so that
log E{exp(γ Tη∗)} � ‖γ ‖2/2 with ‖γ ‖ � (a2s2

n log pn)
1/2 = g. Define B = V 1/2

s (θ∗
s ){Hs(θ

∗
s )}−1V 1/2

s (θ∗
s )

and τ = λmax(B). Because the eigenvalues of Hs(θ
∗
s ) and Vs(θ

∗
s ) are uniformly bounded away from zero and

infinity, τ is bounded by a constant. We scale the matrix and let B∗ = B/τ . Then the maximum eigenvalue
of B∗ is 1. After the scaling, Qs = a2τ(η∗)TB∗η∗ = a2τQ∗

s , where Q∗
s = (η∗)TB∗(η∗).

Next we apply the large deviation result from Corollary 4.2 of Spokoiny & Zhilova (2013). Let
pG = tr(B∗) and v2

G = 2 tr{(B∗)2}. Because g2 = a2s2
n log pn, we have g2 > 2pG. Define wc by

wc(1+wc)/(1+w2
c )

1/2 = gp−1/2
G . Defineμc = min{w2

c/(1+w2
c ), 2/3}. Further, define y2

c = (1+w2
c )pG and

2xc = μcy2
c + log[det{Ids −μc(B∗)2}]. Because pG = O(ds), v2

G = O(ds), and the eigenvalues of B∗ are all
bounded away from zero uniformly, according to Spokoiny & Zhilova (2013), xc > g2/4 for n sufficiently
large. For vG/18 � x � xc, pr{Q∗

s � (pG + 6x)} � 2 exp(−x)+ 8·4 exp(−xc). Choose x = (7/6)sn log pn

so that x < xc. Then

pr{Q∗
s � (pG + 7sn log pn)} � 10·4 exp{−(7/6)sn log pn}.

By the Bonferroni inequality,

max
s∈S

pr(|Q∗
s | > 8sn log pn) �

∑
s

pr(|Q∗
s | > pG + 7sn log pn) → 0.

This means that Qs is Op(sn log pn) uniformly for all s. �

LEMMA A4. Under Assumptions 1–7, if γn = 6ω(1 + γ ) log pn for some γ > 0 or γn = 6ω(log pn +
log log pn), then pr{maxs∈S+ Qs/T/(d∗

s − d∗
T ) � γn} = o(1).

Proof of Lemma A4. Let ηs = Vs(θ
∗
s )

−1/2Un(θ
∗
s ). Based on Assumption 7 and Lemma 1,

log E{exp(γ Tηs)} � a2‖γ ‖2/2 with γ ∈ Rds , ‖γ ‖2 � s2
n log pn, and some constant a2 > 1. If we scale the

vector ηs and let η∗
s = ηs/a, then log E{exp(γ Tη∗

s )} � ‖γ ‖2/2 with ‖γ ‖ � (a2s2
n log pn)

1/2 = g. Given
the matrix Bs = V 1/2

s (θ∗
s )Ms/T V 1/2

s (θ∗
s ), tr(Bs) = d∗

s − d∗
T . Let B∗

s = Bs/τ , where τ = λmax(Bs). Then
the maximum eigenvalue of B∗

s is 1. After the scaling, Qs/T = a2τQ∗
s/T , where Q∗

sT
= (η∗

s )
TB∗

sη
∗
s . Define

pG = tr(B∗
s ) and vG = [2 tr{(B∗

s )
2}]1/2. Using the inequality for the trace of a matrix product (Fang et al.,

1994), vG � (2pG)
1/2. Now we apply the large deviation result from Corollary 4.2 of Spokoiny & Zhilova

(2013) and obtain that if 6xc > K > vG/3,

pr{Q∗
s/T > (pG + K)} � 2 exp(−K/6)+ 8·4 exp(−xc),

where xc > g2/4 for large n. Choosing L = {(d∗
s − d∗

T )/τ }{γn/(a2 − 1)}, limn→∞ L/(vG/3) > 1. Further-
more, since γn(d∗

s − d∗
T ) = O(sn log pn), we have L � 6xc. Using the relationship d∗

s − d∗
T = (ds − dT )τ̄ ,

pG = (d∗
s − d∗

T )/τ , and the Bonferroni inequality, with m′ = ds − dT we have

pr
{

max
s∈S+ Qs/T > (d∗

s − d∗
T )γn

}
�
∑
s∈S+

pr{Q∗
s/T > (d∗

s − d∗
T )γn/(a

2τ)}

=
∑
s∈S+

pr{Q∗
s/T > pG + pG(γn/a

2 − 1)}

�
pn∑

ds=dT +1

C(pn − dT , ds − dT )10·4 exp{−(γn/a
2 − 1)(ds − dT )τ̄ /(6τ)}

�
pn−dT∑
m′=1

C(pn − dT , m′)10·4 exp{−m′(γn/a
2 − 1)/(6w)}

�
[
1 + 10·4 exp{−(γn/a

2 − 1)/(6w)}]pn−dT − 1.
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Because a2 can be chosen as close to 1 as desired by increasing the sample size n, it can be seen that the
choices of γn = 6w(1+γ ) log pn and γn = 6w(log pn + log log pn) lead to limn→∞[1+10·4 exp{−(γn/a2 −
1)/(6w)}]pn−dT = 1. �

LEMMA A5. Let Z1, . . . , Zn be independent random variables. If each Zi has zero mean and unit variance
and satisfies the cumulant boundedness condition in Definition 1, then

pr

{
n∑

i=1

Zn > (2nsn log pn)
1/2

}
= o(p−sn

n ).

Proof of Lemma A5. By Taylor expansion, for |t| � δ, the cumulant generating function for Zi is

gi(t) = t2/2 + g(3)i (t
∗)t3/6

for some 0 � |t∗| � |t| � δ. Let ḡ(3)(t) = n−1
∑

i g(3)i (t). Because each g(3)i is uniformly bounded, the
average ḡ(3) is also bounded. For any |t|/n1/2 � δ, the moment generating function of n−1/2

∑n
i=1 Zi is

φn(t) = exp
{
t2/2 + ḡ(3)(t∗/n1/2)t3/(6n1/2)

}
.

For convenience, let bn = (2·1sn log pn)
1/2. It can be shown that

I

(
n−1/2

n∑
i=1

Zi > bn

)
� exp

{
t

(
n−1/2

n∑
i=1

Zi − bn

)}

for any t > 0. Then

pr

(
n−1/2

n∑
i=1

Zi > bn

)
� E

[
exp

{
t

(
n−1/2

n∑
i=1

Zi − bn

)}]

= exp
{
t2/2 + ḡ(3)(t∗/n1/2)t3/(6n1/2)− bnt

} = exp[(t2/2){1 + o(1)} − bnt].

Letting t = bn,

pr

{
n∑

i=1

Zi > (2·1nsn log pn)
1/2

}
� exp

[−(1/2)b2
n{1 + o(1)}] = o(p−sn

n ),

completing the proof. �

LEMMA A6. Under Assumptions 1–7,

max
s∈S

∣∣∣∣∣
n∑

i=1

�I (θ
∗
s ; Y(i))− E{�I (θ

∗
s ; Y(i))}

∣∣∣∣∣ = Op{(nsn log pn)
1/2},

max
s∈S

∣∣∣∣∣
n∑

i=1

∂�I (θ
∗
s ; Y(i))/∂θj

∣∣∣∣∣ = Op{(nsn log pn)
1/2},
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max
s∈S

∣∣∣∣∣
n∑

i=1

∂2�I (θ
∗
s ; Y(i))/(∂θj∂θk)− E{∂2�I (θ

∗
s ; Y(i))/(∂θj∂θk)}

∣∣∣∣∣ = Op{(nsn log pn)
1/2},

max
s∈S

∣∣∣∣∣
n∑

i=1

∂3�I (θs; Y(i))/(∂θj∂θk∂θl)− E{∂3�I (θs; Y(i))/(∂θj∂θk∂θl)}
∣∣∣∣∣ = Op{(nsn log pn)

1/2},

with j, k , l ∈ {vw : v = 1, . . . , K ; w = 1, . . . , ds} and ‖θs − θ∗
s ‖ � δ.

Proof of Lemma A6. Because �I (θ
∗
s ; Y(i)) satisfies the cumulant boundedness condition in Definition 1,

its first and second moments are bounded uniformly. Given a model s, by Lemma A5,

pr

(
n∑

i=1

[
�I (θ

∗
s ; Y(i))− E{�I (θ

∗
s ; Y(i))}

]/
var{�I (θ

∗
s ; Y(i))} > (2·1nsn log pn)

1/2

)
= o(p−sn

n ).

Because there are psn
n models in the model space, by the Bonferroni inequality,

pr

(
max
s∈S

n∑
i=1

[
�I (θ

∗
s ; Y(i))− E{�I (θ

∗
s ; Y(i))}

]
> C(2·1nsn log pn)

1/2

)
� o(p−sn

n )psn
n → 0,

where C is the upper bound for var{�I (θ
∗
s ; Y(i))}. Similar arguments apply to the results for the first, second

and third derivatives of the pseudo-loglikelihood. �
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